

FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Engineering

Semester - I

Course Code: 102430103

Course Title: Advanced Digital Signal Processing

Type of Course: Program Elective - I

Course Objectives: Students of ME in Signal Processing and communication shall know the fundamentals and applications of digital FIR and IIR filters, predictive and adaptive filters and Multirate signal processing. They are expected to design DSP algorithms for real time applications.

Teaching & Examination Scheme:

Conta	Contact hours per week			se Examination Marks (Maximum / Passi				assing)
Locturo	re Tutorial Practica		Credits	Inter	rnal	External		Total
Lecture	Tutorial	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30/15	20/10	70/35	30/15	150/75

* J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours
1	Implementation of Discrete Time Systems:Structures for IIR systems: Direct form structures, signal flow graphs and transposed structures, cascade form structures, parallel form structures, Lattice structures and lattice-ladder structures, Structures for FIR systems: Direct form structures, cascade form structures, Frequency sampling structures and Lattice structures	06
2	Design of IIR filters:Design of IIR filters by approximation of derivatives, impulse invariant transformations and bilinear transformation method, Design of low pass Butterworth filter and Chebyshev filters, Elliptic filters	09
3	Design of FIR filters:Design techniques for FIR filters, Symmetric and anti- symmetric FIR filters, Design of linear phase FIR filters using Windows, Design of linear phase FIR filters using frequency sampling technique.	09
4	Multirate Signal Processing:Introduction to sampling, up sampling and down sampling, Decimation, Interpolation and sampling rate conversion by rational factor, Multistage implementation of sampling rate conversion, Sampling rate conversion by an arbitrary factor, Applications of multi rate signal processing	09
5	Adaptive Filters: Adaptive direct form FIR filter- The LMS algorithm, Adaptive direct from filter – The RLS algorithm, Adaptive Lattice-ladder filters, Applications of adaptive filters	09

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks					R : Remembering; U : Understanding; A :	
R	U	Α	Ν	Ε	С	Application,
						N: Analyze; E: Evaluate; C: Create
20%	40%	10%	10%	10%	10%	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	J.G.Proakis and D.G.Manolakis, "Digital signal processing: Principles, Algorithm and			
	Applications", 4th Edition, Prentice Hall, 2007			
2	Li Tian "Digital Signal Processing Fundamentals and Applications" Elsevier 2nd Edition.			
3	Anand Kumar "Digital Signal Processing" Prentice Hall India.			
4	S.K. Mitra, "Digital Signal Processing: A computer based approach" TMH, 2001			

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage
CO-1	Realize the filters in form of structures	20
CO-2	Design digital IIR filters.	20
CO-3	Design digital FIR filters.	20
CO-4	Understand multirate signal processing	20
CO-5	Understand the theory of adaptive filers	20

List of Practical / Tutorials:

1	Basic signal representation and perform convolution of two sequences			
2	Implement direct form-I and direct form – II IIR filters			
3	Implement cascade and parallel form of IIR filters			
4	Design of IIR filters using approximation of derivatives, impulse invariant transformations and bilinear transformation method			
5	Design of Butterworth and Chebyshev filters			
6	Design of FIR filters using various windows.			
7	Implementation of Up sampling and down sampling			
8	Implementation of sampling rate conversion by an arbitrary factor			
9	Study of LMS algorithm			
10	Study of RLS algorithm			

Supplementary learning Material:				
1	SCILAB			
2	www.nptel.ac.in			
Curriculum Revision:				
Vers	ion:	1		
Draf	ted on (Month-Year):	Apr-20		
Last	Reviewed on (Month-Year):	Jul-20		
Next Review on (Month-Year):		Apr-22		